65 research outputs found

    An Axiomatic Approach to Routing

    Full text link
    Information delivery in a network of agents is a key issue for large, complex systems that need to do so in a predictable, efficient manner. The delivery of information in such multi-agent systems is typically implemented through routing protocols that determine how information flows through the network. Different routing protocols exist each with its own benefits, but it is generally unclear which properties can be successfully combined within a given algorithm. We approach this problem from the axiomatic point of view, i.e., we try to establish what are the properties we would seek to see in such a system, and examine the different properties which uniquely define common routing algorithms used today. We examine several desirable properties, such as robustness, which ensures adding nodes and edges does not change the routing in a radical, unpredictable ways; and properties that depend on the operating environment, such as an "economic model", where nodes choose their paths based on the cost they are charged to pass information to the next node. We proceed to fully characterize minimal spanning tree, shortest path, and weakest link routing algorithms, showing a tight set of axioms for each.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    A Local-Dominance Theory of Voting Equilibria

    Full text link
    It is well known that no reasonable voting rule is strategyproof. Moreover, the common Plurality rule is particularly prone to strategic behavior of the voters and empirical studies show that people often vote strategically in practice. Multiple game-theoretic models have been proposed to better understand and predict such behavior and the outcomes it induces. However, these models often make unrealistic assumptions regarding voters' behavior and the information on which they base their vote. We suggest a new model for strategic voting that takes into account voters' bounded rationality, as well as their limited access to reliable information. We introduce a simple behavioral heuristic based on \emph{local dominance}, where each voter considers a set of possible world states without assigning probabilities to them. This set is constructed based on prospective candidates' scores (e.g., available from an inaccurate poll). In a \emph{voting equilibrium}, all voters vote for candidates not dominated within the set of possible states. We prove that these voting equilibria exist in the Plurality rule for a broad class of local dominance relations (that is, different ways to decide which states are possible). Furthermore, we show that in an iterative setting where voters may repeatedly change their vote, local dominance-based dynamics quickly converge to an equilibrium if voters start from the truthful state. Weaker convergence guarantees in more general settings are also provided. Using extensive simulations of strategic voting on generated and real preference profiles, we show that convergence is fast and robust, that emerging equilibria are consistent across various starting conditions, and that they replicate widely known patterns of human voting behavior such as Duverger's law. Further, strategic voting generally improves the quality of the winner compared to truthful voting

    Heuristic Voting as Ordinal Dominance Strategies

    Full text link
    Decision making under uncertainty is a key component of many AI settings, and in particular of voting scenarios where strategic agents are trying to reach a joint decision. The common approach to handle uncertainty is by maximizing expected utility, which requires a cardinal utility function as well as detailed probabilistic information. However, often such probabilities are not easy to estimate or apply. To this end, we present a framework that allows "shades of gray" of likelihood without probabilities. Specifically, we create a hierarchy of sets of world states based on a prospective poll, with inner sets contain more likely outcomes. This hierarchy of likelihoods allows us to define what we term ordinally-dominated strategies. We use this approach to justify various known voting heuristics as bounded-rational strategies.Comment: This is the full version of paper #6080 accepted to AAAI'1

    The Pricing War Continues: On Competitive Multi-Item Pricing

    Full text link
    We study a game with \emph{strategic} vendors who own multiple items and a single buyer with a submodular valuation function. The goal of the vendors is to maximize their revenue via pricing of the items, given that the buyer will buy the set of items that maximizes his net payoff. We show this game may not always have a pure Nash equilibrium, in contrast to previous results for the special case where each vendor owns a single item. We do so by relating our game to an intermediate, discrete game in which the vendors only choose the available items, and their prices are set exogenously afterwards. We further make use of the intermediate game to provide tight bounds on the price of anarchy for the subset games that have pure Nash equilibria; we find that the optimal PoA reached in the previous special cases does not hold, but only a logarithmic one. Finally, we show that for a special case of submodular functions, efficient pure Nash equilibria always exist

    Mergers and collusion in all-pay auctions and crowdsourcing contest

    No full text
    • …
    corecore